
高中各種函數(shù)圖像及其性質(zhì)(精編版)
24頁高中各種函數(shù)圖像及其性質(zhì)一次函數(shù)(一) 函數(shù)1、確定函數(shù)定義域的方法: (1)關(guān)系式為整式時,函數(shù)定義域?yàn)槿w實(shí)數(shù); (2)關(guān)系式含有分式時,分式的分母不等于零; (3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零; (4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零; (5)實(shí)際問題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義二) 一次函數(shù) 1、一次函數(shù)的定義一般地,形如(,是常數(shù),且)的函數(shù),叫做一次函數(shù),其中x是自變量當(dāng)時,一次函數(shù),又叫做正比例函數(shù)⑴一次函數(shù)的解析式的形式是,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式.⑵當(dāng),時,仍是一次函數(shù).⑶當(dāng),時,它不是一次函數(shù).⑷正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù).2、正比例函數(shù)及性質(zhì) 一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式 y=kx (k不為零) ① k不為零 ② x指數(shù)為1 ③ b取零當(dāng)k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減?。?1) 解析式:y=kx(k是常數(shù),k≠0)(2) 必過點(diǎn):(0,0)、(1,k)(3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸3、一次函數(shù)及性質(zhì)一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).注:一次函數(shù)一般形式 y=kx+b (k不為零) ① k不為零 ②x指數(shù)為1 ③ b取任意實(shí)數(shù)一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-,0)兩點(diǎn)的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)(1)解析式:y=kx+b(k、b是常數(shù),k0)(2)必過點(diǎn):(0,b)和(-,0) (3)走向: k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限 b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限直線經(jīng)過第一、二、三象限 直線經(jīng)過第一、三、四象限直線經(jīng)過第一、二、四象限 直線經(jīng)過第二、三、四象限(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.(6)圖像的平移: 當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位;當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位.一次函數(shù),符號圖象性質(zhì)隨的增大而增大隨的增大而減小4、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識:經(jīng)過兩點(diǎn)能畫出一條直線,并且只能畫出一條直線,即兩點(diǎn)確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),.即橫坐標(biāo)或縱坐標(biāo)為0的點(diǎn). b>0b<0b=0k>0經(jīng)過第一、二、三象限經(jīng)過第一、三、四象限經(jīng)過第一、三象限圖象從左到右上升,y隨x的增大而增大k<0經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限圖象從左到右下降,y隨x的增大而減小5、正比例函數(shù)與一次函數(shù)之間的關(guān)系一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)6、正比例函數(shù)和一次函數(shù)及性質(zhì)正比例函數(shù)一次函數(shù)概 念一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù)一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時,是y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).自變量范 圍X為全體實(shí)數(shù)圖 象一條直線必過點(diǎn)(0,0)、(1,k)(0,b)和(-,0)走 向k>0時,直線經(jīng)過一、三象限;k<0時,直線經(jīng)過二、四象限k>0,b>0,直線經(jīng)過第一、二、三象限k>0,b<0直線經(jīng)過第一、三、四象限k<0,b>0直線經(jīng)過第一、二、四象限k<0,b<0直線經(jīng)過第二、三、四象限增減性k>0,y隨x的增大而增大;(從左向右上升)k<0,y隨x的增大而減小。
從左向右下降)傾斜度|k|越大,越接近y軸;|k|越小,越接近x軸圖像的平 移b>0時,將直線y=kx的圖象向上平移個單位;b<0時,將直線y=kx的圖象向下平移個單位.6、直線()與()的位置關(guān)系(1)兩直線平行且(2)兩直線相交(3)兩直線重合且(4)兩直線垂直7、用待定系數(shù)法確定函數(shù)解析式的一般步驟: ?。?)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式; ?。?)將x、y的幾對值或圖象上的幾個點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程; ?。?)解方程得出未知系數(shù)的值; ?。?)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式.8、一元一次方程與一次函數(shù)的關(guān)系任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值. 從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.9、一次函數(shù)與一元一次不等式的關(guān)系任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時,求自變量的取值范圍.10、一次函數(shù)與二元一次方程組 (1)以二元一次方程ax+by=c的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=的圖象相同.(2) 二元一次方程組的解可以看作是兩個一次函數(shù)y=和y=的圖象交點(diǎn).二次函數(shù)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。
這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2. 二次函數(shù)的結(jié)構(gòu)特征:⑴ 等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵ 是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式① 一般式:② 頂點(diǎn)式:③ 零點(diǎn)式:圖像定義域?qū)ΨQ軸頂點(diǎn)坐標(biāo)值域單調(diào)區(qū)間遞減遞增遞增遞減當(dāng)時,二次函數(shù)的圖像和軸有兩個交點(diǎn),,線段.當(dāng)時,二次函數(shù)的圖像和軸有兩個重合的交點(diǎn).特別地,當(dāng)且僅當(dāng)時,二次函數(shù)為偶函數(shù).1. 二次函數(shù)基本形式:的性質(zhì):a 的絕對值越大,拋物線的開口越小的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值.2. 的性質(zhì):上加下減的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值.3. 的性質(zhì):左加右減 的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下X=h時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值.4. 的性 質(zhì):的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值.三、二次函數(shù)圖象的平移 1. 平移步驟:方法一:⑴ 將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo);⑵ 保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”.概括成八個字“左加右減,上加下減”. 方法二:⑴沿軸平移:向上(下)平移個單位,變成(或)⑵沿軸平移:向左(右)平移個單位,變成(或) 四、二次函數(shù)與的比較從解析式上看,與是兩種不同的表達(dá)形式,后者通過配方可以得到前者,即,其中.五、二次函數(shù)圖象的畫法五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開口方向、對稱軸及頂點(diǎn)坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對稱軸對稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒有交點(diǎn),則取兩組關(guān)于對稱軸對稱的點(diǎn)).畫草圖時應(yīng)抓住以下幾點(diǎn):開口方向,對稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).六、二次函數(shù)的性質(zhì)1. 當(dāng)時,拋物線開口向上,對稱軸為,頂點(diǎn)坐標(biāo)為.當(dāng)時,隨的增大而減??;當(dāng)時,隨的增大而增大;當(dāng)時,有最小值. 2. 當(dāng)時,拋物線開口向下,對稱軸為,頂點(diǎn)坐標(biāo)為.當(dāng)時,隨的增大而增大;當(dāng)時,隨的增大而減??;當(dāng)時,有最大值.七、二次函數(shù)解析式的表示方法1. 一般式:(,,為常數(shù),);2. 頂點(diǎn)式:(,,為常數(shù),);3. 兩根式:(,,是拋物線與軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時,拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系 1. 二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然. ⑴ 當(dāng)時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; ⑵ 當(dāng)時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大.總結(jié)起來,決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大?。?. 一次項(xiàng)系數(shù) 在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線的對稱軸. ⑴ 在的前提下,當(dāng)時,,即拋物線的對稱軸在軸左側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的右側(cè).⑵ 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,,即拋物線的對稱軸在軸右側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的左側(cè).的符號的判定:對稱軸在軸左邊則,在軸的右側(cè)則,概括的說就是“左同右異” 3. 常數(shù)項(xiàng) ⑴ 當(dāng)時,拋物線與軸的交點(diǎn)在軸上方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為正; ⑵ 當(dāng)時,拋物線與軸的交點(diǎn)為坐標(biāo)原點(diǎn)。
